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A-Stability of a Class of Methods for the 
Numerical Integration of Certain Linear Systems 

of Ordinary Differential Equations 
By M. R. Crisci and E. Russo 

Abstract. This paper is concerned with the analysis of the stability of a class of one-step 
integration methods, originated by the Lanczos tau method and applicable to particular linear 
differential systems. 

It is proved that these methods are A-stable for every order. 

1. Introduction. In [1] the authors derived from the Lanczos tau method a class of 
one-step methods for the numerical integration of linear differential systems with 
polynomial coefficients. 

This paper is concerned with the stability analysis of the above methods. 
As it is known, the stability properties of a method are determined through its 

application to the test equation y' -y = 0 [3]. In fact, let us consider the general 
differential system y' - f(x, y) 0 O, and let g(x) be the particular solution we 
attempt to compute. The local behaviour of this system is determined, to a first 
approximation, by the solution of the variational equation y' - J(x)y 0 O, where 
J(x) = fy(x, g(x)) is the Jacobian matrix. If J(x) varies slowly, locally it can be 
regarded as a constant matrix A, and the equation is modelled by y' - Ay = 0. Let 
us further assume that A is diagonalizable and let P be the similarity transformation 
which takes A to the diagonal form A. Then the substitution u = Py changes the 
above system to u' - Au 0 O, such that each equation is independent of the others 
and it is exactly of the form of the test equation. 

The region of absolute stability of the method is the set of h N such that the 
obtained numerical solution is decaying. 

In this paper, in order to analyze the stability, we will give in Section 2 a 
simplified illustration of the class of methods developed in [1] and applied to a single 
equation. However, it is not prejudicial to the outcome. 

In Section 3 it is proved that the stability region contains the whole of the 
left-hand half-plane Re(hX) < 0, and therefore the methods are A-stable for every 
order. 

2. The Class of Methods. Let us review briefly the method for a single first-order 
differential equation; for the sake of clarity we restrict ourselves to the results 
essential to follow the stability analysis. The complete treatment of the method can 
be found in [1]. 
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Let D be a first-order linear differential operator which maps polynomials into 
polynomials, and let us consider the following initial value problem: 

(2.1) {fDy(x) 0, xo < x < b, 

Y(x21) ) * 

Let us subdivide the interval [xo, b] by a finite set of distinct points xn+1 = xn + h, 
and let yn be the approximate value in xn of the solution. 

Let us consider, for each subinterval [xn, xnn], the perturbed problem: 

(2 .2) DYnm ( x) = 7; Tm( x), Xn < x s Xn + 1 

(2.2') Yn (xn) = Yn 

where Tm(x) is the Chebyshev polynomial defined in [xn, Xn+J], Tin is a parameter to 
be determined, and ynm(x) is a polynomial of degree m, which satisfies exactly the 
perturbed problem (2.2) (2.2'). The method determines Yn+ , as the value in xn+ 1 of 

ynm(x). It is of order m in the sense that if the exact solution of (2.1) is itself a 
polynomial of degree m, the method will reproduce it. 

Let us introduce the canonical polynomials Qk(x), defined by the relation* 

(2.3) DQk(X) = k, k No. 

These polynomials, which can be easily generated by means of a recurrence 
relation [1], are independent of the integration interval [x, xn+J, and allow a 
straight construction of ynm(x). 

In fact, because of the linearity of D, the solution of (2.2) can be expressed 
through 

(2.4) Yn (x) = Tn(eomQO(X) + *+mmQm(X)), 

where em is the coefficient of xk in Tm(x). 

The parameter Tn is calculated by imposing that ynm(x) satisfies the initial condi- 
tion (2.2'), and so is given by 

(2.5) Tn = Em YnQk(x) 

Therefore, for (2.4), (2.5), Yn+ , is given by 

(ko c=kmQk(xn +I) 
(2.6) Yn+i Ynl 2M~Q(xl 

and depends on h through the coefficients em. 
(2.6) is, then, the formula of order m of the class under consideration. 

3. A-Stability of the Method. Let us apply the method (2.6) of order m, with m 
arbitrarily fixed, to the test equation 

(3.1) Y' - Xy = . 

*This is a simplified definition, sufficient for our purposes. In general, some Qk(x) can remain 
undefined for a finite set S of index k, and a linear combination of powers of x with exponents in S is to 
be added at the left hand of (2.3). For further details cf. [I] and [5]. 
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First of all, an expression for the canonical polynomials is required. For the 
particularity of (3.1), Qk(x) can be easily derived from (2.3) and are given by 

k k 
(3.2) Qk(x) = - xi, k E No. 

From (2.6) and (3.2), with some algebraic manipulations, and putting 

dk- 
Tmk)(X) dx k Tm(X) 

it follows that 

k=Ok m Xn+ I) 

(3.3) Yn+ I =Yn N 
km0 Xkrm(Xn) 

Denoting by Tm*(x) the Chebyshev polynomial defined in [0, 1], it is obvious that 

(3*4) hkk)(x) 
= m T h (k)(h(x - ) 

and so, putting q = (hX)-', (3.3) can be written 

(3.5) 
m 

(3 *5 ) ~~~Yn + I =Yn Em T*( k )(O) qk 

Let Fm(q) be defined by 

(3.6) Fm(q) =%Tm (I()qk 

The denominator of Fm(q) can be written as 
m 

(3.7) Gm(q) = k!cm qk 
k=O 

where cm is the coefficient of xk in Tm*(x). 
Let us denote, as usual, the current variable of the polynomial Gm by z. The 

following lemma, which will be useful hereafter, can be proved. 

LEMMA 1. The polynomial Gm(z) has all the zeros in the half-plane Re(z) > 0. 

Proof. The polynomial 
m 

ST(Z) = k! IcmIzk 
k=O 

has its zero opposite to those of Gm(z), because of the property of ckm to alternate 
signs. So it will be equivalent to prove that 7T(z) has all its zeros in the half-plane 
Re(z) < 0, that is, it is a stable polynomial. 

Let /k, I82 I,8/m be the zeros of the polynomial 
m 

F(z) E |Ck I Z- 
k=O 

Since F(z) (1)(m T,m*(-z), /,3 are all real, simple and lying in ]-1, 0[. 
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The polynomial 
m 

o(z ) 1 zk 
k=0 (M- k)! 

is a stable polynomial, as can be readily verified by the Routh-Hurwitz criterion. 
The coefficients of mT(z) can be expressed combining those of 1(z) and 03(z). In 

fact, if we put 

Yk / Ck (k Ekk!, 

then 

(3.8) F(Z) k_O (M )yk 

(3.10) (Z)= 
- 

( fkl)k Zk. 

Now, applying a known theorem of Szego [4], every zero 8i of 7(z) has the form 

Si = -af3i, where a is a suitably chosen point of the half-plane of the zeros of @(z), 
that is, the half-plane Re(z) < 0, and /Pi is a negative real number, since it is a zero 
of r(z). 

Therefore 1T(z) is a stable polynomial, and the result holds. 
That being stated, the main result can be proved. 

THEOREM 1. The methods are A-stable for every order m. 

Proof. As is known, the method is A-stable if and only if I Fm(q) I< 1 for 
Re(q) < 0. This in turn follows if and only if the following two conditions hold: 

(i) I Fm(q) I< I on Re(q) = 0, 
(ii) FM(q) is analytic for Re(q) < 0, 

because the maximum modulus theorem can be applied to establish boundedness. 
In order to prove (i) some properties of Tm*(k)(X) will be needed. In particular it is 

easily verified that 

(3 .1 1 ) | Tm*(k)(0) |=| T,*(k)(1) | 

(3.12) sgn(T mk)(0)) (-) 

(3.13) sgn(T,*(k)(1)) = 1. 

Therefore (3.6) can be written: 

(3.14) Fm(q) = - %Tk= (km()qk 
) m( ~~~(-_ )m Em 0(_ ) kT*( k) ( ) k 

For Re(q) = 0, Fm(q) is the ratio of two conjugate complex numbers, and then (i) 
holds. (ii) is also satisfied, as has been proved by Lemma 1. 

The theorem holds. 
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